Adoptive Cellular Therapy to Treat Cancer

Jonathan Serody MD
Elizabeth Thomas Professor of Medicine, Microbiology and Immunology
Director Cancer Cellular Therapy Program UNC Health Care
Timeline for Cancer Treatment

- **1882**: Development of Radical Mastectomy
- **1903**: First Use of Radiation Therapy to treat Skin Cancer
- **1947**: First Use of Antimetabolites with Use of Aminopterin to Treat Leukemia
- **1958**: Frei, Freireich and Holland Demonstrate Efficacy Combination Chemotherapy
- **2001**: Development of Imatinib, Targeted Therapy for CML
Last 10 Years Focus on Immunotherapy

Emma Whitehead article in NYT featured 6 year old cured of ALL with CD19.CAR T cells at U Penn

<table>
<thead>
<tr>
<th>Approval First</th>
<th>Approval First</th>
<th>Approval First anti-PD-1 Inhibitor</th>
<th>CAR T cell Therapy Approved for ALL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cancer Vaccine</td>
<td>Checkpoint Inhibitor</td>
<td>Pembrolizumab</td>
<td>for ALL</td>
</tr>
<tr>
<td>2010</td>
<td>2011</td>
<td>2014</td>
<td>2017</td>
</tr>
</tbody>
</table>
Chimeric Antigen Receptor T cells

T cell
- Viral DNA Insertion
- Expression of CAR

Tumor cell
- CAR enables T cell to recognize tumor cell antigen
- CAR T cells multiply and release cytokines
- Tumor cell apoptosis

Antigen
CAR-T Cell manufacturing

1. Collect blood
 Blood is collected from the study participant.

2. Activate T cells
 The T cells are isolated from the blood and activated using anti-CD3 and CD28 antibodies.

3. Express CAR
 A virus is used to transfer DNA information into the T cells that instructs the T cells to produce a chimeric antigen receptor (CAR) on its surface. The result is a CAR-T cell that is designed to recognize and attack cancer cells.

4. Expand T cells
 Researchers use growth factors to spur the CAR-T cells to multiply by the tens of thousands.

5. Testing and freezing
 Once there is a sufficient number of CAR-T cells, they are tested for functionality, confirmed to be sterile and frozen until needed.

6. Infusion
 The CAR-T cells are thawed and administered to the study participant via an IV infusion. Monitoring for safety and response is performed at specific intervals.
Future Directions and UNC Trials
UNC and Baylor Develop CAR T cell Therapy Effective Against Hodgkin Lymphoma

CD30 CAR-T Cell Trials

Anti-CD30 CAR-T Cell Therapy in Relapsed and Refractory Hodgkin Lymphoma

Carlos A. Ramos, MD; Natalie S. Girwer, MD; Anne W. Brown, MD; Premal D. Lulla, MD; Meng-Fen Wu, MS; Anastasia Ivanova, PhD; Tao Wang, PhD; Thomas C. Shea, MD; Clara M. Rooney, PhD; Christopher Ditto, DO; Steven L. Park, MD; Adam P. Gee, PhD; Paul E. Elledge, PhD; Kathryn L. McKay, MS; Biju Mehta, MS; Catherine J. Cheng, MS; Faith B. Buchanan, PA; Bambi J. Gille, RPh; Matthew Morrison, MD; Malcolm K. Bremner, MD, PhD; Jonathan S. Serody, MD; Gianpietro Dotti, MD; Helen E. Herlop, MD; and Barbara Sankoff, MD, PhD

July 2020
CD30.CAR-T Cells

- Phase 1/2 trials run in parallel at BCM and UNC
- CD30+ lymphomas
 - Progressed after 2 lines of tx
 - Any level of CD30 expression
- Primary objective: safety
- Secondary: response per Lugano
 - Initial assessment at week 6

Lymphodepletion

- Cell Procurement
- Bridging therapy
- CAR T cell Infusion
- d1, d3-6, 6 wks
- Initial assessment

Bridging Therapy

- Bendamustine (90 mg/m²/day) x 2 days
- Bendamustine (70 mg/m²/day) x 3 days
- Fludarabine (30 mg/m²/day) x 3 days

Cell Procurement

- Cyclophosphamide (500 mg/m²/day) x 3 days
- Fludarabine (30 mg/m²/day) x 3 days

NCT02690545
Feb 2016

NCT02917083
Sept 2016
Clinical Responses

Benda (n=5)
- PD 80%
- SD 20%

Benda/Flu (n=15)
- PD 13%
- CR 73%
- PR 7%
- SD 7%

Cy/Flu (n=17)
- PD 23%
- CR 47%
- PR 18%
- SD 12%

Patients with active disease at time of treatment
Clinical Responses

Patients had active disease and complete response
N=19, Median PFS: 444 days, 95% CI: 260 - NA
FDA granted RMAT designation to CAR T-cell therapy for HL
Can we be effective without causing toxicities?
CARs with a Safety Switch

• CAR-T cells with inducible caspase 9 safety switch

Chemical inducer of dimerisation (CID): AP1903 or AP20187

CAR T cells eliminated

Active caspase 9 dimer

Inducible caspase 9 homodimer (iCasp9)

Drug-binding domain

Activates proapoptotic molecules

Apoptosis
CD19.CAR-T with iC9 Safety Switch

- 26 yo F with refractory B-ALL received CD19 CAR-T cells with iC9 safety switch
- Developed severe neurotoxicity (ICANS) with non-convulsive status epilepticus with stupor persisting for 72 hours despite standard of care steroids
Neurotoxicity Resolved with Rimiducid (Dimerizing Agent)

TO THE EDITOR:
Utility of a safety switch to abrogate CD19.CAR T-cell-associated neurotoxicity

Matthew C. Foster,1,* Barbara Sosnicki,2,4* Winnie Lou,1,3 Claire Rubins,3 Natalie Gruener,1,3 Paul Amirov,1,3 James Congdon1,3 Robin A. Hager,1† Kaitlin McFarland,1 Keri Shane Bush,2,1 Catherine Cheng,3 Spencer Leng,7 Susan Isaac Thompson,1,3 John Work,2,3 Aaron Froster,7 Jonathan Serody,1,5,7 and Guoyanluo Du2,5,7

1Department of Pediatrics, School of Medicine, University of North Carolina at Chapel Hill, 2Division of Hematology/Oncology, School of Medicine, University of North Carolina at Chapel Hill, 3Department of Pediatrics, School of Medicine, University of North Carolina at Chapel Hill, 4Department of Pathology, School of Medicine, University of North Carolina at Chapel Hill, 5Department of Neurology, School of Medicine, University of North Carolina at Chapel Hill, 6Institute for Global Public Health, University of North Carolina at Chapel Hill, 7School of Public Health, University of North Carolina at Chapel Hill

*These authors contributed equally to this work. †Deceased.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Days Post CAR-T Cell Infusion
0 200 400 600 800 1000 1200 1400
pg/ml
IL-6
IL1Ra
PCR
methylprednisolone
tocilizumab and
dexamethasone
0 20000 40000 60000 80000 100000 120000 140000
Copies/ug DNA
= grade 1 ICANS
= grade 3-4 ICANS

- Neurotoxicity Resolved with Rimiducid (Dimerizing Agent)
One of the first approaches demonstrating the activity of CAR T cells to treat relapsed/refractory breast cancer

For the first time using this model we cured over 70% of the mice permanently

Now testing this approach in head and neck cancer

From: STING agonist promotes CAR T cell trafficking and persistence in breast cancer
Other Open CAR-T Trials

• CD30 CAR with CCR4 – Hodgkin Lymphoma and Cutaneous T cell Lymphoma
• C30 CAR- T cell Lymphoma
• CD138.CAR – Multiple myeloma*
• Kappa.CAR – Lymphoma
• GD2.CAR- neuroblastoma and osteosarcoma* (pediatric trial)
• B7H3 CAR – ovarian cancer
• HER2 CAR Macrophage – Solid Tumors

*: Studies supported by philanthropy
Philanthropy also critical to support manufacturing of all CAR products